Unions of regular families

Robert Rałowski and Szymon Żeberski

Winter School in Abstract Analysis Section: Set Theory & Topology Hejnice, February 2016

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Cardinal coefficients

Let X - Polish space, $I \subseteq P(X)$ - σ ideal on X.

$$cov(I) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq I \land \bigcup \mathcal{A} = X\}$$
$$cov_h(I) = \min\{|\mathcal{A}| : \mathcal{A} \subseteq I \land (\exists B \in Bor(X) \setminus I)B \subseteq \bigcup \mathcal{A}\}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

 \mathscr{N} - all null subsets of \mathbb{R} and \mathscr{M} all meager subsets of X.

Bukovsky Theorem (1979)

- For every partition A of real line onto null sets there is A' ⊆ A s.t. UA' is not Lebesgue measurable set of ℝ.
- ▶ For every partition \mathcal{A} of real line onto meager sets there is $\mathcal{A}' \subseteq \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ does not Baire property.

L. Bukovsky, Any partition into Lebesque measure zero sets produces a non-measurable set, Bull. Polish Acad. Sci. Math. 27 (1979) 431–435.

Bukovsky Theorem (1979)

- ▶ For every partition \mathcal{A} of real line onto null sets there is $\mathcal{A}' \subseteq \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ is not Lebesgue measurable set of \mathbb{R} .
- For every partition A of real line onto meager sets there is A' ⊆ A s.t. ∪ A' does not Baire property.

L. Bukovsky, Any partition into Lebesque measure zero sets produces a non-measurable set, Bull. Polish Acad. Sci. Math. 27 (1979) 431–435.

Polish ideal space

Let X – uncountable Polish space $I \subseteq P(X)$ σ -ideal on X with Borel base containing all singletons of X. Then (X, I) - Polish ideal space. $A \subseteq X$ is I-measurable if $A \in Bor(X)[I]$ i.e

 $A = B \triangle I$ for some $B \in Bor(X)$ and $I \in I$.

 $\mathcal{A} \subseteq P(X)$ is summable if for any $\mathcal{A}' \subseteq \mathcal{A}, \bigcup \mathcal{A}'$ is *I*-measurable set.

 $\mathcal{A} \subseteq P(X)$ is point-finite family if

$$(\forall x \in X) | \{A \in \mathcal{A} : x \in A\} | < \aleph_0.$$

Polish ideal space

Let X – uncountable Polish space $I \subseteq P(X)$ σ -ideal on X with Borel base containing all singletons of X. Then (X, I) - Polish ideal space. $A \subseteq X$ is I-measurable if $A \in Bor(X)[I]$ i.e

 $A = B \triangle I$ for some $B \in Bor(X)$ and $I \in I$.

 $\mathcal{A} \subseteq P(X)$ is summable if for any $\mathcal{A}' \subseteq \mathcal{A}$, $\bigcup \mathcal{A}'$ is *I*-measurable set.

 $\mathcal{A} \subseteq P(X)$ is point-finite family if

$$(\forall x \in X) | \{A \in \mathcal{A} : x \in A\} | < \aleph_0.$$

Polish ideal space

Let X – uncountable Polish space $I \subseteq P(X)$ σ -ideal on X with Borel base containing all singletons of X. Then (X, I) - Polish ideal space. $A \subseteq X$ is I-measurable if $A \in Bor(X)[I]$ i.e

 $A = B \triangle I$ for some $B \in Bor(X)$ and $I \in I$.

 $\mathcal{A} \subseteq P(X)$ is summable if for any $\mathcal{A}' \subseteq \mathcal{A}$, $\bigcup \mathcal{A}'$ is *I*-measurable set.

 $\mathcal{A} \subseteq \mathcal{P}(X)$ is point-finite family if

$$(\forall x \in X) | \{A \in \mathcal{A} : x \in A\} | < \aleph_0.$$

Theorem (Brzuchowski, Cichoń, Grzegorek and Ryll-Nardzewski (1979))

Assume that (X, I) is Polish ideal space. If $\mathcal{A} \subseteq I$ is point-finite family such that $\bigcup \mathcal{A} = X$ then there is a $\mathcal{A}' \subseteq \mathcal{A}$ such that $\bigcup \mathcal{A}'$ is not *I*-measurable in *X*.

J.Brzuchowski J. Cichoń E. Grzegorek C. Ryll-Nardzewski, On the existence of nonmeasurable unions, Bull. Polish Acad. Sci. Math. 27 (1979) 447–448.

Theorem (Fremlin)

It is relative consistent with ZFC that there exists a \mathcal{N} -summable point-countable family $\mathcal{A} \subseteq \mathcal{N}$ of [0,1] s.t. $\bigcup \mathcal{A} = [0,1]$.

D. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987).

Theorem (Fremlin-Todorcević)

Let $\mathcal{A} \subseteq \mathcal{N}$ be a partition of [0, 1], then for every $\epsilon > 0$ there is a $\mathcal{A}' \subseteq \mathcal{A}$ such that $1 - \epsilon < \lambda^*(\bigcup \mathcal{A}')$ and $\lambda_*(\bigcup \mathcal{A}') < \epsilon$.

D.Fremlin, S. Todorcević, Partition of [0,1] into negligible sets, 2004, preprint http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Theorem (Fremlin)

It is relative consistent with ZFC that there exists a \mathcal{N} -summable point-countable family $\mathcal{A} \subseteq \mathcal{N}$ of [0,1] s.t. $\bigcup \mathcal{A} = [0,1]$.

D. Fremlin, Measure-additive coverings and measurable selectors, Dissertationes Math. 260 (1987).

Theorem (Fremlin-Todorcević)

Let $\mathcal{A} \subseteq \mathcal{N}$ be a partition of [0, 1], then for every $\epsilon > 0$ there is a $\mathcal{A}' \subseteq \mathcal{A}$ such that $1 - \epsilon < \lambda^*(\bigcup \mathcal{A}')$ and $\lambda_*(\bigcup \mathcal{A}') < \epsilon$.

D.Fremlin, S. Todorcević, Partition of [0,1] into negligible sets, 2004, preprint http://www.essex.ac.uk/maths/staff/fremlin/preprints.htm

Cantor-Bendixon rank

For topological space X let $A \subseteq X$ and A' is a set of all accumulation points of A. For any $\alpha \in ON$

• $A^{(\alpha+1)} = (A^{(\alpha)})'$

•
$$\alpha$$
-limit then $A^{\alpha} = \bigcap_{\xi < \alpha} A^{(\xi)}$

Theorem (C-M-R-CRN-Z)

Let (X, I) Polish ideal space. Assume that $\mathcal{A} \subseteq P(X)$ is a family

- every $A \in \mathcal{A}$ is closed of X,
- $(\exists \alpha \in \omega_1) (\forall A \in \mathcal{A}) \ A^{(\alpha)} = \emptyset,$
- ► *A* is *I*-summable family.

Then $\bigcup \mathcal{A} \in I$.

J. Cichoń, M. Morayne, R. Rałowski, C. Ryll-Nardzewski, S. Żeberski, On nonmeasurable unions, Topol. and its Appl. 154 (2007) 884-893

Cantor-Bendixon rank

For topological space X let $A \subseteq X$ and A' is a set of all accumulation points of A. For any $\alpha \in ON$

• $A^{(\alpha+1)} = (A^{(\alpha)})'$

•
$$\alpha$$
-limit then $A^{\alpha} = \bigcap_{\xi < \alpha} A^{(\xi)}$

Theorem (C-M-R-CRN-Z)

Let (X, I) Polish ideal space. Assume that $\mathcal{A} \subseteq P(X)$ is a family

• every $A \in \mathcal{A}$ is closed of X,

•
$$(\exists \alpha \in \omega_1) (\forall A \in \mathcal{A}) \ A^{(\alpha)} = \emptyset$$
,

A is I-summable family.

Then $\bigcup A \in I$.

J. Cichoń, M. Morayne, R. Rałowski, C. Ryll-Nardzewski, S. Zeberski, On nonmeasurable unions, Topol. and its Appl. 154 (2007) 884-893

Completely nonmeasurable set

Let (X, I) be a Polish ideal space. Then $A \subseteq X$ is completely *I*-nonmeasurable set if

$$(\forall B \in Bor(X) \setminus I) \ B \cap A \neq \emptyset \land B \cap A^{\mathsf{c}} \neq \emptyset$$

• every completely $[X]^{\omega}$ -nonmeasurable set is a Bernstein set,

- every completely \mathcal{N} -nonmeasurable set $A \subseteq [0, 1]$ has $\lambda_*(A) = 0$ and $\lambda^*(A) = 1$.
- every completely *M*-nonmeasurable set has not Baire property in each nonempty open set of *X*.

Completely nonmeasurable set

Let (X, I) be a Polish ideal space. Then $A \subseteq X$ is completely *I*-nonmeasurable set if

$$(\forall B \in Bor(X) \setminus I) B \cap A \neq \emptyset \land B \cap A^c \neq \emptyset$$

• every completely $[X]^{\omega}$ -nonmeasurable set is a Bernstein set,

- every completely *N*-nonmeasurable set A ⊆ [0, 1] has λ_{*}(A) = 0 and λ^{*}(A) = 1.
- every completely *M*-nonmeasurable set has not Baire property in each nonempty open set of *X*.

Theorem (C-M-R-CRN-Ż)

Let (X, I) be Polish ideal space. Let $\mathcal{A} \subseteq I$ be a family such that:

- 1. $\bigcup \mathcal{A} = X$,
- 2. for every $x \in X$ we have $\bigcup \{A \in A : x \in A\} \in I$,

3.
$$cov_h(I) = \mathfrak{c}$$
,

then there is $\mathcal{A}' \subseteq \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ is completely I-nonmeasurable in X.

Theorem (C-M-R-CRN-Ż)

Let $\mathcal{A} \subseteq \mathscr{M}$ be a partition of \mathbb{R} then there is $\mathcal{A}' \subseteq \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ is completely \mathscr{M} -nonmeasurable set in \mathbb{R} .

Theorem (C-M-R-CRN-Ż)

Let (X, I) be Polish ideal space. Let $\mathcal{A} \subseteq I$ be a family such that:

- 1. $\bigcup \mathcal{A} = X$,
- 2. for every $x \in X$ we have $\bigcup \{A \in A : x \in A\} \in I$,

3.
$$cov_h(I) = \mathfrak{c}$$
,

then there is $\mathcal{A}' \subseteq \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ is completely I-nonmeasurable in X.

Theorem (C-M-R-CRN-Ż)

Let $\mathcal{A} \subseteq \mathcal{M}$ be a partition of \mathbb{R} then there is $\mathcal{A}' \subseteq \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ is completely \mathcal{M} -nonmeasurable set in \mathbb{R} .

We say that uncountable κ is quasi-measurable if there exists κ -additive *c.c.c.* ideal $I \subseteq P(\kappa)$ (i.e. $P(\kappa)/I$ is c.c.c. algebra).

Theorem (Zeberski, RR)

Assume that (X, I) is Polish ideal space and I is c.c.c. and there is no quasi-measurable $\kappa \leq c$. Then for every point-finite $\mathcal{A} \subseteq I$ such that $\bigcup \mathcal{A} = X$ there is $\mathcal{A}' \subseteq \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ is completely I-nonmeasurable in X.

We say that uncountable κ is quasi-measurable if there exists κ -additive *c.c.c.* ideal $I \subseteq P(\kappa)$ (i.e. $P(\kappa)/I$ is c.c.c. algebra).

Theorem (Żeberski, RR)

Assume that (X, I) is Polish ideal space and I is c.c.c. and there is no quasi-measurable $\kappa \leq c$. Then for every point-finite $\mathcal{A} \subseteq I$ such that $\bigcup \mathcal{A} = X$ there is $\mathcal{A}' \subseteq \mathcal{A}$ s.t. $\bigcup \mathcal{A}'$ is completely I-nonmeasurable in X.

(日) (同) (三) (三) (三) (○) (○)

Definiton

Let X Polish space then every partition $\pi \subseteq P(X)$ of X is strongly Borel measurable if for every closed set $D \subseteq X$

$$\bigcup \{A \in \pi : A \cap D \neq \emptyset\} \in Bor(X).$$

For $F \subseteq X \times Y$ and $(x, y) \in X \times Y$ we define $F_x = \{t \in Y : (x, t) \in F\}, \quad F^y = \{s \in X : (s, y) \in F\},$ $\pi_X(F) = \bigcup \{F_y : y \in Y\}.$

Theorem (Zeberski, RR)

Let (X, I) Polish ideal space s.t. each $B \in Bor(X) \setminus I$ contains I-positive perfect set. Then for every strongly Borel partition $\mathcal{A} \subseteq I$ of X there is \mathcal{A}' s.t. $\bigcup \mathcal{A}'$ is completely I-nonmeasurable.

Theorem (Zeberski and RR)

Let (X, I) Polish ideal space, Y topological space. Assume that $f : X \to Y$ is I-measurable map s.t. for any $y \in Y$, $f^{-1}[\{y\}] \in I$. Then there is $T \subseteq Y$ s.t. $f^{-1}[T]$ is completely I-nonmeasurable. R. Rałowski and S. Żeberski, Complete nonmeasurability in regular families. Houston, Journal of Mathematics, vol. 34, no. 3, (2008).

Theorem (Zeberski, RR)

Let (X, I) Polish ideal space s.t. each $B \in Bor(X) \setminus I$ contains *I*-positive perfect set. Then for every strongly Borel partition $\mathcal{A} \subseteq I$ of X there is \mathcal{A}' s.t. $\bigcup \mathcal{A}'$ is completely *I*-nonmeasurable.

Theorem (Zeberski and RR)

Let (X, I) Polish ideal space, Y topological space. Assume that $f : X \to Y$ is I-measurable map s.t. for any $y \in Y$, $f^{-1}[\{y\}] \in I$. Then there is $T \subseteq Y$ s.t. $f^{-1}[T]$ is completely I-nonmeasurable. R. Rałowski and S. Żeberski, Complete nonmeasurability in regular families, Houston Journal of Mathematics, vol 34 no 3, (2008)

(日) (同) (三) (三) (三) (○) (○)

Theorem (Żeberski, RR)

Assume that (X, I) Polish ideal space, I is c.c.c. and Y topological space, $F : X \to Y$ is I-measurable multifunction s.t. for any $x \in X$ f(x) is finite. Then there exists $T \subseteq Y$ s.t. $f^{-1}[T]$ is completely I-nonmeasurable.

Theorem (Żeberski, RR)

Assume that (X, I) Polish ideal space, I is c.c.c. and Y topological space. Let $F \subseteq X \times Y$ analytic relation s.t.

- 1. $(\forall y \in Y) F^y \in I$,
- 2. $X \setminus \pi_X[F] \in I$,
- $3. \ (\forall x \in X) |F_x| < \aleph_0,$

then there exists $T \subseteq Y$ s.t. $F^{-1}[T]$ is completely *I*-nonmeasurable.

R. Rałowski and S. Żeberski, Complete nonmeasurability in regular families, Houston Journal of Mathematics, vol 34 no 3, (2008)

Theorem (Żeberski, RR)

Assume that (X, I) Polish ideal space, I is c.c.c. and Y topological space, $F : X \to Y$ is I-measurable multifunction s.t. for any $x \in X$ f(x) is finite. Then there exists $T \subseteq Y$ s.t. $f^{-1}[T]$ is completely I-nonmeasurable.

Theorem (Żeberski, RR)

Assume that (X, I) Polish ideal space, I is c.c.c. and Y topological space. Let $F \subseteq X \times Y$ analytic relation s.t.

1.
$$(\forall y \in Y) F^y \in I$$
,

2.
$$X \setminus \pi_X[F] \in I$$
,

3.
$$(\forall x \in X) |F_x| < \aleph_0$$
,

then there exists $T \subseteq Y$ s.t. $F^{-1}[T]$ is completely *I*-nonmeasurable.

R. Rałowski and S. Żeberski, Complete nonmeasurability in regular families, Houston Journal of Mathematics, vol 34 no 3, (2008)

Thank You for your attention

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>